Reference Data

¹³C NMR Assignments of Some Amidoximes, 1,2,4-Oxa(thia)diazole-5(4*H*)-ones (thiones) and 1,2,4-Oxadiazine-6(5*H*)-ones(thiones)

Yaşar Dürüst*

Department of Chemistry, Kocaeli University TR-41300 İzmit, Turkey

Received 17 November 1997; revised 16 May 1998; Accepted 19 May 1998

ABSTRACT: 13 C NMR chemical shifts for some pyridyl-containing N-substituted amidoximes, 1,2,4-oxadiazoles and 1,2,4-oxadiazines bearing a thiocarbonyl group are reported. The chemical shift positions of the particular carbon atoms are discussed in view of literature knowledge and the effect of atoms or groups present.

KEYWORDS: NMR; ¹³C NMR; amidoximes; oxadiazoles; oxadiazines

INTRODUCTION

Amidoximes and N-substituted amidoximes have been widely used in the synthesis of many heterocyclic compounds. ¹⁻³ In particular, they and their derivatives have been reported to be used as drugs and to have considerable biological activity (antifungal, antibacterial and antitumoral). ⁴⁻¹⁰ Synthetic procedures for substituted amidoximes, oxadiazoles, oxadiazines and thiadiazoles have been reported previously. ¹¹⁻¹⁶ To our knowledge, there is no report in the literature concerning ¹³C NMR spectral studies of pyridyl-bearing N-substituted amidoximes, 1,2,4-oxadiazoles, thiadiazoles and oxadiazines. In this paper, ¹³C NMR chemical shifts of the title compounds are reported.

EXPERIMENTAL

N-substituted amidoximes were synthesized by the action of primary amines on the corresponding hydroximoyl chlorides in methanol under reflux. 11,12 1,2,4-oxadiazole-5(4H)-thiones **2a-h** were obtained by the reaction of corresponding amidoximes with thiophosgene. 14 1,2,4-thiadiazole-5(4H)-ones **2i** and **j** are thermal rearrangement products of **2a** and **b**, respectively in diphenyl ether. $^{14-16}$ 1,2,4-Oxadizin-6(5H)-ones **3a-d** were obtained from the reaction of the corresponding amidoximes with chloroacetyl chloride. 13 Thiones **3e** and **f** were synthesized 13 from the oxadiazinones **3c** and **d**, respectively by thionation with P_2S_5 . 1,2,4-Oxadiazoles **4a-c** were obtained by the action of chloroacetyl chloride on appropriate amidoximes. 13

¹³C NMR spectra were recorded on Varian XL-100 and JEOL FX-270 instrument operating at 25.2 and 67.8 MHz, respectively. Typical experimental conditions for running ¹³C NMR spectra were as follows: sweep width, 5 kHz; pulse width, 16 μs; pulse delay, 0.6 s; acquisition time, 1 s; data points, 12K; and number of scans, 11.3K.

RESULTS AND DISCUSSION

The structures of the title compounds with atom labelling are presented in Fig. 1-4 and the $^{13}{\rm C}$ NMR chemical shifts and signal assignments for the particular atoms are shown in Tables 1-4.

In the proton decoupled spectra of amidoximes 1a-f, azomethine carbon signals appear between 148 and 154 ppm from TMS. These

E-mail: durust@kou.edu.tr

		R^{l}	R ²
\mathbb{R}^1	a	2-Pyridyl	Et
C=NOH	b	2-Pyridyl	n-Pr
NH	c	2-Pyridyl	$PhCH_2$
R2	d	3-Pyridyl	Me
R ²	e	3-Pyridyl	$PhCH_2$
1	f	4-Pyridyl	p-MeC ₆ H ₄

Figure 1. Structure of amidoximes 1a-f.

		X	Y	Rı	\mathbb{R}^2
	a	О	S	2-Pyridyl	Me
R^1 2	b	O	S	2-Pyridyl	Et
	c	O	S	2-Pyridyl	n-Pr
${}^{4}N \sim 5$	d	O	S	3-Pyridyl	$p-MeC_6H_4$
\mathbb{R}^2	e	Ο	S	4-Pyridyl	Me
Y	f	O	S	4-Pyridyl	Et
2	g	O	S	4-Pyridyl	$p-MeC_6H_4$
-	h	O	S	Me	Ph
	i	S	O	2-Pyridyl	Me
	j	S	Ο	2-Pyridyl	Et

Figure 2. Structure of oxa(thia)diazole-5(4H)-ones(thiones) 2a-j.

		X	\mathbb{R}^1	R2
$R_{\lambda_2}^1$	a	O	Me	Н
$\sum_{i=1}^{3} N^2$	b	O	Ph	Н
NR2 O 1	c	O	Ph	Me
CH ₂	d	O	Ph	Ph
X	e	S	Ph	Me
	f	S	Ph	Ph

Figure 3. Structure of oxadiazine-6(5H)-ones (thiones) 3a–f.

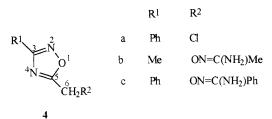


Figure 4. Structure of 1,2,4-oxadiazoles 4a-c.

Table 1. ¹³C NMR chemical shifts^a of azomethine carbons of amidoximes 1a–f

		Compounds				
Atom	1a	1b	1c	1d	1e	1f
C-1	151.86	153.97	151.47	153.22	153.29	148.31

^a In ppm referenced to TMS.

^{*}Correspondence to: Y. Dürüst, Department of Chemistry, Kocaeli University, TR-41300 İzmit, Turkey.

Reference Data

Table 2. ¹³C NMR chemical shifts^a of azomethine and thiocarbonyl carbons of oxa(thia)diazole-5(4H)-ones-(thiones) 2a-j

						Compound				
Atom	2a	2b	2c	2d	2e	2f	2g	2h	2i	2j
C-3 C-5	157.51 188.29	156.83 187.34	159.13 179.84	157.62 186.52	158.58 204.91	Unobserved 179.89	Unobserved 173.43	Unobserved 201.67	151.06 205.26	148.72 206.38

^a In ppm referenced to TMS.

assignments are in accord with the values reported in the literature for oximes. $^{17-22}$

In the spectra of 1,2,4-oxadiazole-5(4H)-thiones 2a-h, azomethine carbons resonate at 148–159 ppm and thiocarbonyl carbons at 173–206 ppm (Fig. 2 and Table 2). The signal intensities of quaternary and thiocarbonyl carbons are generally low, and for 2f-h azomethine carbon signals were not detected. In general, the replacement of a carbonyl by a thiocarbonyl results in a downfield shift. ^{19,22–25} For 1,2,4-thiadiazole-5(4H)-ones 2i and 2j, which are rearranged products of 2a and 2b, respectively, the carbonyl carbons appeared at downfield values. When the C=O is adjacent to a sulfur atom it causes a downfield shift of the carbonyl carbon. This effect operates also when a carbonyl is replaced by a thiocarbonyl group. ²² This may be due to the effect of the ring sulfur atom in the heterocycle.

In the ¹³C NMR spectra of oxadiazin-6(5H)-ones **3a-d**, azomethine carbons, C-3, gave chemical shifts at 141–156 ppm. Carbonyl carbons, C-5, of **3a-5** appeared at 164–166 ppm and thiocarbonyl carbons, C-5, of **3e** and f at 153–154 ppm (Fig. 3 and Table 3). In open-chain analogs of N-CX-S (X=O, S) bonding, it was reported²⁴ that there is a linear correlation for thiocarbonyl carbon chemical shift positions given by the equation δ (C=S) = 1.45 δ (C=O) – 46.5 ppm. However, this would not be applicable for the title compounds. The upfield values of the carbonyl and thiocarbonyl carbons for the oxadiazine-5-ones (thiones) **3a-d** are interesting in comparison with those of oxadiazole-5-thiones **2a-h**.

Thiocarbonyl carbons of 1,2,4-oxadiazines 3e and f appeared at upfield values. This may be reasoned by CH₂ insertion between the thiocarbonyl and oxygen. C-6 methylene carbons were observed at

Table 3. ¹³C NMR chemical shifts^a of 1,2,4-oxadiazine-6(5*H*)-ones(thiones) 3a–f

	Compound					
Atom	3a	3b	3c	3d	3e	3f
C-3	150.80	150.85	156.15	141.58	131.20	138.31
C-5	166.52	166.48	165.31	164.14	154.59	153.66
C-6	66.37	66.86	67.69	68.42	74.32	75.10

^a In ppm referenced to TMS.

Table 4. ¹³C NMR chemical shifts of 1,2,4-oxadiazoles 4a-c

		Compound				
Atom	4a	4b	4c			
C-3	168.83	152.03	153.53			
C-5	174.32	176.37	176.42			
C-6	33.39	65.50	66.10			
R^2C-1		167.19	Unobserved			

^a In ppm referenced to TMS.

66-75 ppm. Deshielding of the CH₂ carbons in 3e and f can be attributed to the thiocarbonyl group in addition to the neighboring oxygen.

In the case of 1,2,4-oxadiazoles, the C-3 ring carbons of 1,2,4-oxadiazole derivatives 4a-c appear at 152-168 ppm (Fig. 4 and Table 4). The azomethine carbon C-3 of 4a resonates at 168 ppm, which is more downfield with respect to those of 4b and c. Similar chemical shifts have been reported for 1,2,4-oxadiazole derivatives. ²⁶⁻³⁰ Methylene carbons, C-6, have chemical shifts at 33 ppm for 4a where a chlorine atom is bonded and at 65 ppm for 4b and 66 ppm for 4c where CH₂ is bonded to an electronegative oxygen atom. More deshielded values of the CH₂ carbons in 4b and c can also be interpreted as the effect of the oxime moiety. The C-5 carbons, which are bonded to oxime moiety R² through CH₂ of 4b and c, were observed as more deshielded relative to C-3. In the proton coupled spectra of 4a-c the C-6 methylene carbons appeared as triplets. For 4b the amidoxime methyl carbon and oxadiazole ring methyl carbon appeared as quadruplets.

Acknowledgement

Dr Y. Z. Menceloğlu is gratefully acknowledged for measuring ¹³C NMR spectra of the compounds.

REFERENCES

- D. N. Nicolaides and E. A. Varella, in *The Chemistry of Acid Derivatives, Supplement B*, edited by S. Patai, Vol. 2, p. 875, Wiley, Chichester (1992).
- 2. F. Eloy and R. Lenaers, Chem. Rev. 62, 155 (1962).
- A. Quilico, G. Speroni, L. C. Behrand and R. L. McKee, in Five and Six Membered Compounds with Nitrogen and Oxygen, edited by R. H. Wiley. pp. 245, 447. Wiley-Interscience, New York (1962).
- 4. B. van't Riet and H. L. Elford, Drugs Future 16, 990 (1991).
- E. Toja, C. Bonetti, A. Butti, P. Hunt, M. Fortin, F. Barzaghi, M. L. Formento, A. Maggioni, A. Nencioni and G. Galliani, Eur. J. Med. Chem. 26, 853 (1991).
- G. Cristali, P. Franchetti, M. Grifantini and S. Ripa, Farmaco 41, 499 (1986).
- C. J. Swain, R. Baker, C. Karen, J. Moseley, J. Saunders, E. M. Seward, G. Stevenson, M. Beer and J. Stanton, J. Med. Chem. 34, 140 (1991).
- W. R. Tully, C. R. Gardner, R. J. Gillespie and R. Westwood, J. Med. Chem. 34, 2060 (1991).
- P. T. Berkowitz, R. A. Long, P. Dea, R. K. Robins and T. R. Matthews, J. Med. Chem. 20, 134 (1977).
- 10. F. Gümüş, Y. Dürüst, and U. Abbasoğlu, *Pharmazie* 48, 867 (1993).
 11. H. Ağırbaş, Y. Dürüst and D. Sümengen, *Chim. Acta. Turc.* 23, 21
- (1995).

 12. D. Sümengen, H. Ağırbaş, Y. Dürüst and N. Doğan, Chim. Acta
- Turc. 20, 17 (1992).
- 13. H. Ağirbaş, D. Sümengen, Y. Dürüst and N. Dürüst, Synth. Commun. 22 209 (1992).
- Y. Dürüst, H. Ağırbaş, and D. Sümengen, Phosphorus Sulfur Silicon 62, 47 (1991).
- H. Ağırbaş, Y. Dürüst and D. Sümengen, Phosphorus Sulfur Silicon 66, 321 (1992).
- H. Ağırbaş, Y. Dürüst and A. Karahasanoğlu, Phosphorus Sulfur Silicon 114, 173 (1996).

Reference Data

- 17. E. Pretsch, T. Clerc, J. Seibl and W. Simon, Strukturaufklärung Organischer Verbindungen, 3. Auflage. Springer, Berlin (1986).
- G. C. Levy, R. Lichter and G. L. Nelson, Nuclear Magnetic Resonance Spectroscopy. Wiley, New York (1980).
 E. Breitmaier and W. Voelter, Carbon-13 NMR Spectroscopy, 3rd
- ed. VCH, Weinheim (1990).
- 20. L. F. Johnson and W. C. Jankowski, Carbon-13 NMR Spectra. Wiley-Interscience, New York (1972).
- 21. G. E. Hawkes, K. Herwig and J. D. Roberts, J. Org. Chem. 39, 1017 (1974).
- 22. A. Rykowski, E. Guzik, M. Makosza and W. Holzer, J. Heterocycl. Chem. 30, 413 (1986).
- 23. W. Hanefield and Z. E. Günes, Liebigs Ann. Chem. 1140 (1986).

- 24. A. R. Katritzky, S. Sobiak and C. M. Marson, Magn. Reson. Chem. 26, 665 (1988).
- 25. L. Pongo, J. Reiter, J. Barkoczy, P. Sohar and I. Pallaghi, J. Heterocycl. Chem. 27, 1249 (1990).
- 26. S. Chiou and H. J. Shine, J. Heterocycl. Chem. 26, 125 (1989).
- 27. J. Szabo, L. Fodor, G. Bernath, G. S. Talpas, E. Beni-Akoto and P. Sohar, J. Heterocycl. Chem. 28, 481 (1991).
- 28. A. J. Freyer, R. A. Nissan and W. S. Wilson, Magn. Reson. Chem. **31**, 7 (1993).
- 29. W. M. Johnson, S. W. Littler and C. E. Skene, Aust. J. Chem. 46, 315 (1993).
- 30. W. Ried and M. Fulde, Chem. Z. 113, 315 (1989)